Name

'ATIONS AND THE TOTAL OF THE PARTY OF THE PA

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

PHYSICS 9702/06

Paper 6

May/June 2005

45 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all of the questions in any two options.

The number of marks is given in brackets [] at the end of each question or part question. You may lose marks if you do not show your working or if you do not use appropriate units.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Exam	iner's Use
Α	
F	
M	
Р	
Т	
Total	

speed of	liaht	in free	space.
opoda oi	9		opaco,

permeability of free space,

permittivity of free space,

elementary charge,

the Planck constant,

unified atomic mass constant,

rest mass of electron,

rest mass of proton,

molar gas constant,

the Avogadro constant,

the Boltzmann constant,

gravitational constant,

acceleration of free fall,

$$c = 3.00 \times 10^8 \,\mathrm{m\,s^{-1}}$$

$$\mu_0 = 4\pi \times 10^{-7}~{\rm H}\,{\rm m}^{-1}$$

$$\epsilon_0 = 8.85 \times 10^{-12} \, \mathrm{F \, m^{-1}}$$

$$e = 1.60 \times 10^{-19} \text{ C}$$

$$h = 6.63 \times 10^{-34} \,\mathrm{Js}$$

$$u = 1.66 \times 10^{-27} \text{ kg}$$

$$m_{\rm e} = 9.11 \times 10^{-31} \text{ kg}$$

$$m_{\rm p} = 1.67 \times 10^{-27} \text{ kg}$$

$$R = 8.31 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$$

$$N_{\Delta} = 6.02 \times 10^{23} \, \text{mol}^{-1}$$

$$k = 1.38 \times 10^{-23} \,\mathrm{J\,K^{-1}}$$

$$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$$

$$g = 9.81 \text{ m s}^{-2}$$

www.PanaCambridge.com

Formulae

uniformly accelerated motion,

$$s = ut + \frac{1}{2}at^2$$
$$v^2 = u^2 + 2as$$

work done on/by a gas,

$$W = p\Delta V$$

gravitational potential,

$$\phi = -\frac{Gm}{r}$$

simple harmonic motion,

$$a = -\omega^2 x$$

velocity of particle in s.h.m.,

$$v = v_0 \cos \omega t$$

$$v = \pm \omega \sqrt{(x_0^2 - x^2)}$$

resistors in series,

$$R = R_1 + R_2 + \dots$$

resistors in parallel,

$$1/R = 1/R_1 + 1/R_2 + \dots$$

electric potential,

$$V = \frac{Q}{4\pi\epsilon_0 r}$$

capacitors in series,

$$1/C = 1/C_1 + 1/C_2 + \dots$$

capacitors in parallel,

$$C = C_1 + C_2 + \dots$$

energy of charged capacitor,

$$W = \frac{1}{2}QV$$

alternating current/voltage,

$$x = x_0 \sin \omega t$$

hydrostatic pressure,

$$p = \rho gh$$

pressure of an ideal gas,

$$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$

radioactive decay,

$$x = x_0 \exp(-\lambda t)$$

decay constant,

$$\lambda = \frac{0.693}{t_{\frac{1}{2}}}$$

critical density of matter in the Universe,

$$\rho_0 = \frac{3H_0^2}{8\pi G}$$

equation of continuity,

$$Av = constant$$

Bernoulli equation (simplified),

$$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$$

Stokes' law,

$$F = Ar\eta v$$

Reynolds' number,

$$R_{\rm e} = \frac{\rho v r}{\eta}$$

drag force in turbulent flow

$$F - Rr^2 \alpha v^2$$

Answer **all** of the questions in any **two** of the Options.

Answer the questions in the spaces provided on the Question Paper.

The Options are as follows.

Option A	Astrophysics and Cosmology	questions 1, 2 and 3
Option F	The Physics of Fluids	questions 4, 5 and 6
Option M	Medical Physics	questions 7, 8 and 9
Option P	Environmental Physics	questions 10, 11 and 12
Option T	Telecommunications	questions 13 and 14

Option A

Astrophysics and Cosmology

1 Fig.1.1 illustrates the Milky Way galaxy.

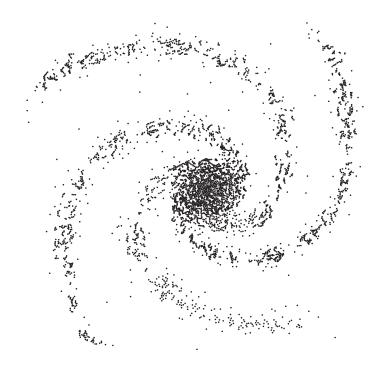


Fig. 1.1

(a) On Fig. 1.1, mark the approximate position of the Solar System.

For Examiner's Use

(b)	Sta	te approximate values, in light-years, for
	(i)	the diameter of the Milky Way galaxy, diameter =light-years [1]
		diameter = light-years [1]
	(ii)	the average separation of stars in one arm of the galaxy.
		separation = light-years [1]
(c)		oble was able to map out the Universe to a distance of approximately 500 million t-years.
	_	te the number of galaxies that were estimated to exist within this distance.
		number =[1]

2 Fig. 2.1 shows the variation with age of the temperature of the Universe.

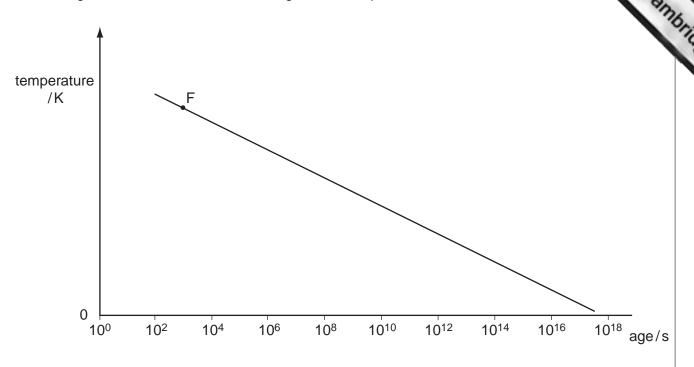


Fig. 2.1

(a) Point F on the graph represents the point at which light elements were formed. Suggest the maximum temperature at which this formation occurred.

temperature =		K	[1]	
---------------	--	---	-----	--

(b) Mark the point on the line at which galaxies began to form. [1]

(c)	Suggest why, in the Universe, there is an excess of matter over antimatter.		

3 It has been reported recently that some galaxies have been discovered that are esting be 12600 million light-years from Earth.

www.PapaCambridge.com (a) (i) The Hubble constant has been estimated to be $60 \, \mathrm{km} \, \mathrm{s}^{-1} \, \mathrm{Mpc}^{-1}$. Use this value to calculate the approximate age of the Universe. (1 pc = $3.1 \times 10^{16} \, \mathrm{m}$)

		age =	years [5]
	(ii)	Hence calculate the fraction of the age of the Universe for these galaxies has been travelling to Earth.	which the light from
		fraction =	[1]
	(iii)	 Suggest why the discovery of these galaxies may have understanding of the development of the Universe. 	e significance for an
	_		
(b)	Exp	explain why there is a limit to the extent of the observable Univers	se.

Option F

The Physics of Fluids

A rectangular iceberg floats in seawater of density $1030 \, \text{kg} \, \text{m}^{-3}$, as illustrated in Fig. 4.1.

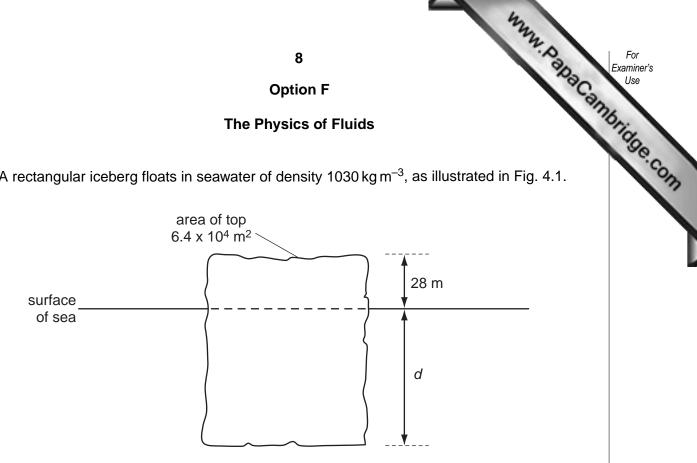


Fig. 4.1

The iceberg floats with its top, area $6.4 \times 10^4 \,\mathrm{m}^2$, 28 m above the surface of the sea. The density of ice is 920 kg m⁻³.

(a)	Stat	te what provides the upthrust on an object when it is immersed in a fluid.
		[1]
(b)		bottom of the iceberg is at a depth d , measured in metres. Give expressions, in as of d , for
	(i)	the mass of the iceberg,
		[2]
	(ii)	the mass of seawater displaced by the iceberg.
		[1]

- (c) Using your answers in (b), determine
 - (i) the depth d,

d	=	 m	[2]	ı

(ii) the fraction of the iceberg that is below the water surface.

5 (a) Explain what is meant by a *viscous* liquid.

- (b) Suggest why, for viscous flow of a fluid through a pipe, the flow rate is expressed as a volume flow rate, measured in m³s⁻¹, rather than a linear speed, measured in m s⁻¹.
- (c) The volume flow rate V of a viscous liquid undergoing steady flow through a tube of length L and radius r is given by

$$V = \frac{\pi r^4 p}{8\eta L} ,$$

where η is the viscosity of the liquid and p is the pressure difference between the ends of the tube.

Water of density 1.0×10^3 kg m⁻³ flows out of a container through a tube of length 13 cm and internal diameter 1.8 mm, as illustrated in Fig. 5.1.

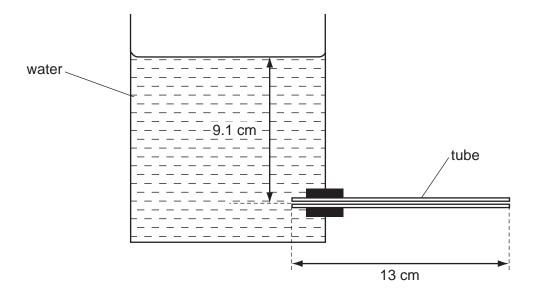


Fig. 5.1

For Examiner's

When the axis of the tube is at a depth of 9.1 cm below the water surface, water of the tube at a rate V of 1.5×10^{-6} m³ s⁻¹.

(i) Show that the pressure difference between the ends of the tube is approximately 890 Pa.

[2]

(ii) Determine the viscosity of the water.

viscosity = $N s m^{-2}$ [2]

www.PapaCambridge.com Streamlines are a means by which fluid flow may be modelled. 6 (a) Explain (i) what is meant by a streamline, (ii) why streamlines can never touch or cross.[1] **(b)** State and explain the change in fluid flow when streamlines become closer together.

Option M

Medical Physics

	Option M
	Option III
	Medical Physics
(a)	Option M Medical Physics Outline briefly the use of magnetic resonance to obtain diagnostic information aborinternal body structures.
	[
)	In some medical applications, the diagnostic information may be obtained using magnetic resonance or using X-rays. State two disadvantages of the use of magnet resonance.
	1
	2
	P.

- 8 A person is accidentally exposed for a short time to ionising radiation.
 - (a) Explain

		the state of the s	
		14 In is accidentally exposed for a short time to ionising radiation. Is accidentally exposed for a short time to ionising radiation. Is accidentally exposed for a short time to ionising radiation. Is accidentally exposed for a short time to ionising radiation. Is accidentally exposed for a short time to ionising radiation. Is accidentally exposed for a short time to ionising radiation. Is accidentally exposed for a short time to ionising radiation.	For Fxaminer's
Ар	ersor	n is accidentally exposed for a short time to ionising radiation.	Use
(a)	Exp	olain	Monio
	(i)	what is meant by absorbed dose,	3e.co
		[2	1
	(ii)	why the effect of the exposure depends on the type of radiation.	
		[2	1
(b)		gest why the effects of the exposure cannot be fully assessed within a few weeks o exposure.	f
		[2]

ĺ	For
Į	Examiner's
	1100

	* Way	
	15	For Examiner's
A person +2.5 D.	n discovers that the power of the lens used to correct the defect of one of his this corrective lens, name the type of lens,	Use
(a) For	this corrective lens,	Tide
(i)	name the type of lens,	, col
(ii)	calculate the focal length in centimetres.	
	focal length = cm [1]	
(b) (i)	Name the defect of this eye.	
	[1]	
(ii)	Make calculations to estimate the distance of the far point and the distance of the near point from this unaided eye.	
	distance of far point =	
	distance of near point =[4]	

Option P

Environmental Physics

	The state of the s
	16 A. D.
	Option P
	Environmental Physics
(a)	16 Option P Environmental Physics Explain why the Earth's resources of fossil fuels are different from the total reserves.
	[3]
(b)	The formation of fossil fuels is a continuous process. Suggest why the reserves of these fuels are considered to be finite.
	[2]

(a) Complete Fi	g. 11.1 to illustrate	17 the action of a fo	our-stroke petrol e	ngine.	For Examiner's Use
stroke	induction	compression	power		Tage
inlet valve	open			closed	OH
outlet valve				open	

Fig. 11.1

(b)		lern four-stroke petrol engines frequently consist of four cylinders, each fitted with inlet valves and two exhaust valves. Suggest, with one reason (in each case), why
	(i)	there are four cylinders,
		[2]
	(ii)	there are more than two valves in each cylinder.
		[2]

12	(a)	(i)	18 Explain what is meant by <i>pollution</i> .	For Examiner's Use
		(ii)	State one example of pollution that is 1. man-made,	/dde-com
			2. natural.	
	(b)		ggest why large areas of forest are important to maintain the Earth's atmosphere a environment.	
				.[3]

Option T

Telecommunications

www.PapaCambridge.com 13 An analogue signal is to be transmitted in digital form. (a) Outline briefly the principles involved in the analogue-to-digital conversion of the signal and its transmission.[5] **(b)** Suggest two advantages of the transmission of data in digital form. 2.

ĺ	For
Į	Examiner's
q	1100

		Why.	
		20	For Examiner's
The	optio	osed to install an optic fibre link between London (England) and Sydney (Autoritibre, length 18000 km, has an attenuation of 1.7 dB km ⁻¹ . The noise power look 10×10 ⁻¹⁹ W. The refractive index of the core of the fibre is 1.5. ain what is meant by attenuation,	Use Mbhic
(a)	Ехр	ain what is meant by	A6.C
	(i)	attenuation,	19
			.
		[1]	ı
	(ii)	noise.	
		[1]	I
(b)	The	signal-to-noise ratio must not fall below 25 dB.	
	(i)	Show that the smallest effective signal power that can be detected in the fibre is 1.9×10^{-16} W.	;
		[2	
	(ii)	Calculate the maximum uninterrupted length of fibre through which a signal can be transmitted for an input signal of power 7.0 mW.	•
		length = km [3]	I

c)	With to b	h reference to your answer in (b)(ii) , suggest what can be done to enable the see received in Sydney.	ambridg
		[1]
d)		alternative means by which the signal could be sent is by using a geostational ellite. The orbit of such a satellite is 3.6×10^4 km above the Earth's surface.	
	(i)	Explain what is meant by a geostationary orbit.	
		[2]
	(ii)	By considering the times of transmission by optic fibre and by satellite, explain briefly one advantage of the fibre when compared with the satellite.	in
		[:	3]

22 BLANK PAGE www.PapaCambridge.com

23

BLANK PAGE

www.PapaCambridge.com

24

BLANK PAGE

www.PapaCambridge.com

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.